和・差・積の余り
和・差・積の余り
5+6を4で割った余りは, $5+6=11$ であるから, $11=4\cdot2+3$ より3である.
これは,5を4で割った余りの1と,6を4で割った余りの2を加えた3と等しい.
すなわち,「足してから割った余り」と「割ってから足した余り」が等しくなっている. 一般的に次のことが言える.
和・差・積の余り
2つの整数 $a,b$ を $m$ で割った時の余りを,それぞれ $r,r'$ とすると,次のことが成り立つ.
- $a+b$ を $m$ で割った余りは, $r+r'$ を $m$ で割った余りと等しい.
- $a−b$ を $m$ で割った余りは, $r−r'$ を $m$ で割った余りと等しい.
- $ab$ を $m$ で割った余りは, $rr'$ を $m$ で割った余りと等しい.
【証明】
和・差・積の余り
- $5^{100}$ を4で割った余りを求めよ.
- $2^{100}$ を7で割った余りを求めよ.
なし