上への写像(全射)

全射の図

全射の図

$B$ のどのような要素 $y$ に対しても $f(x)=y$ となるような $A$ の要素 $x$ が存在するとき $f$ を上への写像 (onto-mapping)、または全射 (surjection) という。

吹き出し上への写像(全射)

全射では、$B$ のどのような要素も考えてみても、矢印の向わないところはなく、全部の要素に最低1本は矢印が向かっている。それゆえ、全射と覚えるとよい。単射と違い、2本以上の矢印が向かっていてもよい点に注意しよう。